Cell No. : Cell Name
RCB2649 : B16F1
update : 2024/08/21
|
Comment | Mouse cell line derived from melanoma. C57BL/6J strain. TKG0347 (Deposited from Tohoku Univ.). |
Comment from the depositor | |
Terms and conditions | There is no restriction regarding use for basic researches. In relation to commercial use and use for patent filing, first of all please contact the RIKEN BRC. |
Remarks | |
Order Form |
Order Form(C-0005.pdf)
 
MTA(C-0007.pdf)
 
MTA(C-0007p.pdf)
 
|
Regarding MTA between user institutions and RIKEN BRC, there are two kinds of MTA, not-for-profit academic purpose (C-XXXX) and for-profit research purpose (C-XXXXp) , depending on the sort of user institutions and the purposes of use. Please use an appropriate MTA(to see). In relation to commercial use and use for patent filing, first of all Please contact RIKEN BRC (cellbank.brc@riken.jp).
|
|
Basic information
|
Depositor |
Fukuda, Hiroshi
|
Originator |
Fidler, I. J.
|
Year of deposit |
2007
|
Original cell |
TKG0347
|
Animal |
_mouse
< Mammals
|
Strain name |
C57BL/6J
|
Tissue |
skin
|
Disease name |
melanoma
|
Classification |
cancer
|
History |
Cell Resource Center for Biomedical Research, Tohoku University(TKG0347)
|
|
Lifespan |
infinite
|
Morphology |
epithelial-like
|
Cellosaurus(Expasy) |
CVCL_0158
|
| |
deposit info |
lot info |
|
Medium |
Medium List |
|
Culture type |
|
Adherent cells
|
Culture medium |
|
RPMI1640 + 10% FBS
|
Antibiotics |
|
Free
|
|
Passage method |
|
0.25% Trypsin
|
Culture information
|
Passage ratio |
|
1 : 8 split
|
SC frequency |
|
Subculture : 2 times/week
|
Temperature |
|
37
℃
|
CO2 concentration |
|
5
%
|
Freeze medium |
|
Medium + 10% DMSO
|
Freezing method |
|
Slow freezing
|
Mycoplasma |
|
(-)
|
SSLP(mouse) |
|
OK
|
Isozyme |
|
LD, NP
|
Images |
deposit info | lot info |
|
|
Reference information |
Reference |
8
|
User's Publication |
14
|
Reference |
5225
Fan D, Liaw A, Denkins YM, Collins JH, Van Arsdall M, Chang JL, Chakrabarty S, Nguyen D, Kruzel E, Fidler IJ.
Type-1 transforming growth factor-beta differentially modulates tumoricidal activity of murine peritoneal macrophages against metastatic variants of the B16 murine melanoma.
J Exp Ther Oncol
2002
2(5):286-97
PubMed ID: 12416032
DOI: 10.1046/j.1359-4117.2002.01053.x
|
5222
Price JE1, Naito S, Fidler IJ.
Growth in an organ microenvironment as a selective process in metastasis.
Clin Exp Metastasis
1988
6(1):91-102
PubMed ID: 2961497
DOI: 10.1007/BF01580409
|
5220
Poste G, Doll J, Fidler IJ.
Interactions among clonal subpopulations affect stability of the metastatic phenotype in polyclonal populations of B16 melanoma cells.
Proc Natl Acad Sci U S A
1981
78(10):6226-30
PubMed ID: 6947225
DOI: 10.1073/pnas.78.10.6226
|
5217
Raz A, Bucana C, McLellan W, Fidler IJ.
Distribution of membrane anionic sites on B16 melanoma variants with differing lung colonising potential.
Nature
1980
284(5754):363-4
PubMed ID: 7360272
DOI: 10.1038/284363a0
|
5219
Poste G, Doll J, Hart IR, Fidler IJ.
In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties.
Cancer Res
1980
40(5):1636-44
PubMed ID: 7370995
|
5216
Fidler IJ, Nicolson GL.
Tumor cell and host properties affecting the implantation and survival of blood-borne metastatic variants of B16 melanoma.
Isr J Med Sci
1978
14(1):38-50
PubMed ID: 632082
|
5213
Fidler IJ, Gersten DM, Budmen MB.
Characterization in vivo and in vitro of tumor cells selected for resistance to syngeneic lymphocyte-mediated cytotoxicity.
Cancer Res
1976
36(9 pt.1):3160-5
PubMed ID: 975082
|
5214
Fidler IJ, Nicolson GL.
Organ selectivity for implantation survival and growth of B16 melanoma variant tumor lines.
J Natl Cancer Inst
1976
57(5):1199-202
PubMed ID: 1003551
DOI: 10.1093/jnci/57.5.1199
|
User's Publication |
19590
Kazuomi Sato, Yosuke Hiraga, Yuji Yamaguchi, Setsuko Sakaki, Hiroyuki Takenaka
Anti-Melanogenic and Anti-Oxidative Effects of Nostoc verrucosum (ashitsuki) Extracts
Cosmetics
2023
10:30
DOI: 10.3390/cosmetics10010030
|
20602
Kanemaru H, Mizukami Y, Kaneko A, Kajihara I, Fukushima S.
A protocol for quantifying lymphocyte-mediated cytotoxicity using an impedance-based real-time cell analyzer.
STAR Protoc
2022
3(1):101128
PubMed ID: 35118432
DOI: 10.1016/j.xpro.2022.101128
|
21039
Sato T, Sato K.
Adverse Effect of Blue Light on DNA Integrity Is Accelerated by 5-Aminolevulinic Acid in HaCaT Human Keratinocyte Cells and B16F1 Murine Melanoma Cells.
Biology (Basel)
2022
11(12)
PubMed ID: 36552253
DOI: 10.3390/biology11121743
|
17482
Nishio T, Kishi R, Sato K, Sato K.
Blue light exposure enhances oxidative stress, causes DNA damage, and induces apoptosis signaling in B16F1 melanoma cells
Mutat Res Genet Toxicol Environ Mutagen
2022
883-884:503562
PubMed ID: 36462794
DOI: 10.1016/j.mrgentox.2022.503562
|
20086
Ito Y, Sato K.
Salicylamide Enhances Melanin Synthesis in B16F1 Melanoma Cells.
Biomol Ther (Seoul)
2021
PubMed ID: 33731492
DOI: 10.4062/biomolther.2020.222
|
20355
Mochizuki K, Kobayashi S, Takahashi N, Sugimoto K, Sano H, Ohara Y, Mineishi S, Zhang Y, Kikuta A.
Alloantigen-activated (AAA) CD4+ T cells reinvigorate host endogenous T cell immunity to eliminate pre-established tumors in mice.
J Exp Clin Cancer Res
2021
40(1):314
PubMed ID: 34625113
DOI: 10.1186/s13046-021-02102-6
|
11133
Yamaguchi H, Hiroi M, Ohmori Y.
Silencing of the interferon-inducible gene Ifi204/p204 induces resistance to interferon-γ-mediated cell growth arrest of tumor cells.
Cytokine
2019
118:80-92
PubMed ID: 30017387
DOI: 10.1016/j.cyto.2018.06.029
|
11698
Kazuomi Sato, Yuji Yamaguchi, Setsuko Sakaki, Hiroyuki Takenaka
Pleurochrysis carterae Hot-Water Extract Inhibits Melanogenesis in Murine Melanoma Cells
Cosmetics
2019
DOI: 10.3390/cosmetics6040060
|
18199
Morita T, Hayashi K.
Tumor Progression Is Mediated by Thymosin-β4 through a TGFβ/MRTF Signaling Axis
Mol Cancer Res
2018
16(5):880-893
PubMed ID: 29330296
DOI: 10.1158/1541-7786.MCR-17-0715
|
4350
Aoto K, Ito K, Aoki S.
Complex formation between platelet-derived growth factor receptor β and transforming growth factor β receptor regulates the differentiation of mesenchymal stem cells into cancer-associated fibroblasts.
Oncotarget
2018
PubMed ID: 30344924
DOI: 10.18632/oncotarget.26124
|
10038
Ito M, Minami K, Sagane Y, Watanabe T, Niwa K.
Data on melanin production in B16F1 melanoma cells in the presence of emu oil.
Data Brief
2016
9:1056-1059
PubMed ID: 27924292
DOI: 10.1016/j.dib.2016.11.039
|
12625
Nishio T, Usami M, Awaji M, Shinohara S, Sato K.
Dual effects of acetylsalicylic acid on ERK signaling and Mitf transcription lead to inhibition of melanogenesis
Mol Cell Biochem
2016
412(1-2):101-10
PubMed ID: 26699907
DOI: 10.1007/s11010-015-2613-x
|
14583
Kondo T, Tsunematsu T, Yamada A, Arakaki R, Saito M, Otsuka K, Kujiraoka S, Ushio A, Kurosawa M, Kudo Y, Ishimaru N.
Acceleration of tumor growth due to dysfunction in M1 macrophages and enhanced angiogenesis in an animal model of autoimmune disease
Lab Invest
2016
96(4):468-80
PubMed ID: 26808709
DOI: 10.1038/labinvest.2015.166
|
18179
Chiba S, Ikushima H, Ueki H, Yanai H, Kimura Y, Hangai S, Nishio J, Negishi H, Tamura T, Saijo S, Iwakura Y, Taniguchi T.
Recognition of tumor cells by Dectin-1 orchestrates innate immune cells for anti-tumor responses
Elife
2014
3:e04177
PubMed ID: 25149452
DOI: 10.7554/eLife.04177
|