Search
CELL BANK Website

Back Back
Cell No. : Cell Name
RCB2403 : MG6  update : 2024/10/04
CommentMouse microglial cell line immortalized by a replication-deficient retroviral vector containing human c-myc gene. No significant production of infectious viral particles from MG6 cells was confirmed by bioassay using SC-1 cells.
Comment from the depositor
Terms and conditions1) There is no restriction regarding use for basic researches. In relation to commercial use and use for patent filing, first of all please contact the RIKEN BRC. 2) In publishing research results obtained by the use of the BIOLOGICAL RESOURCE, a citation of the literature ref. (Neurosci Lett 2006 407(3):205-10, Biochim Biophys Acta 2005 1726(2):177-86) designated by the DEPOSITOR is required.
Remarks
Order Form Order Form(C-0005.pdf)   MTA(C-0007.pdf)   MTA(C-0007p.pdf)  
Regarding MTA between user institutions and RIKEN BRC, there are two kinds of MTA, not-for-profit academic purpose (C-XXXX) and for-profit research purpose (C-XXXXp) , depending on the sort of user institutions and the purposes of use. Please use an appropriate MTA(to see). In relation to commercial use and use for patent filing, first of all Please contact RIKEN BRC (cellbank.brc@riken.jp).
Basic information Depositor Kitani, Hiroshi
Originator Kitani, Hiroshi
Year of deposit 2006
Another name MG6-1
Animal _mouse < Mammals
Strain name C57BL/6
Gender Unknown
Age at sampling 1 day
Tissue brain
Classification transformed
Recombinant recombinant
Exogene pMV-7, HSV-tk
Vector human c-myc, neomycin, retroviral vector
Lifespan infinite
Morphology other (macrophage-like)
Cellosaurus(Expasy) CVCL_8732
deposit info
lot info
Medium Medium List
Culture type Adherent cells
Culture medium DMEM (high glucose) + 10% FBS + 10μg/ml Insulin + 0.1mM 2-Mercaptoethanol
Antibiotics Free
Passage method pipetting
Coating dish Non-tissue culture dish (CORNING 351007 etc)
Culture information Passage ratio 1 : 8 split
SC frequency Subculture : 1-2 times/week, Medium Renewal : 2 times/week
Temperature 37 ℃
CO2 concentration 5 %
Freeze medium Medium + 10% DMSO
Freezing method Slow freezing
Mycoplasma (-)
SSLP(mouse) OK
Isozyme LD, NP
Reference information Reference 9
User's Publication 72


To topTop
Reference
5301  Otani Y, Yamaguchi Y, Sato Y, Furuichi T, Ikenaka K, Kitani H, Baba H.  PLD$ is involved in phagocytosis of microglia: expression and localization changes of PLD4 are correlated with activation state of microglia.  PLoS One  2011  6(11):e27544  PubMed ID: 22102906   DOI: 10.1371/journal.pone.0027544
5300  Nakamichi K, Kitani H, Takayama-Ito M, Morimoto K, Kurane I, Saijo M.  Celastrol suppresses morphological and transcriptional responses in microglial cells upon stimulation with double-stranded RNA.  Int J Neurosci  2010  120(4):252-7  PubMed ID: 20374071   DOI: 10.3109/00207451003615763
5299  Takenouchi T, Nakai M, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, Wei J, Sekigawa A, Sato M, Kojima S, Kitani H, Hashimoto M.  The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells.  J Immunol  2009  182(4):2051-62  PubMed ID: 19201858   DOI: 10.4049/jimmunol.0802577
5298  Takenouchi T, Iwamaru Y, Sugama S, Sato M, Hashimoto M, Kitani H.  Lysophospholipids and ATP mutually suppress maturation and release of IL-1 beta in mouse microglial cells using a Rho-dependent pathway.  J Immunol  2008  180(12):7827-39  PubMed ID: 18523246   DOI: 10.4049/jimmunol.180.12.7827
5295  Nakamichi K, Saiki M, Kitani H, Kuboyama Y, Morimoto K, Takayama-Ito M, Kurane I.  Roles of NF-kappaB and MAPK signaling pathways in morphological and cytoskeletal responses of microglia to double-stranded RNA.  Neurosci Lett  2007  414(3):222-7  PubMed ID: 17284350   DOI: 10.1016/j.neulet.2006.12.058
5296  Takenouchi T, Sato M1, Kitani H1.  Lysophosphatidylcholine potentiates Ca2+ influx, pore formation and p44/42 MAP kinase phosphorylation mediated by P2X7 receptor activation in mouse microglial cells.  J Neurochem  2007  102(5):1518-1532  PubMed ID: 17437542   DOI: 10.1111/j.1471-4159.2007.04570.x
5297  Sugama S, Takenouchi T, Kitani H, Fujita M, Hashimoto M.  Activin as an anti-inflammatory cytokine produced by microglia.  J Neuroimmunol  2007  192(1-2):31-9  PubMed ID: 17976743   DOI: 10.1016/j.jneuroim.2007.08.016
5293  Nakamichi K, Saiki M, Kitani H, Kuboyama Y, Morimoto K, Takayama-Ito M, Kurane I.  Suppressive effect of simvastatin on interferon-beta-induced expression of CC chemokine ligand 5 in microglia.  Neurosci Lett  2006  407(3):205-10  PubMed ID: 16978784   DOI: 10.1016/j.neulet.2006.08.044
5294  Takenouchi T, Ogihara K, Sato M, Kitani H.  Inhibitory effects of U73122 and U73343 on Ca2+ influx and pore formation induced by the activation of P2X7 nucleotide receptors in mouse microglial cell line.  Biochim Biophys Acta  2005  1726(2):177-86  PubMed ID: 16122875   DOI: 10.1016/j.bbagen.2005.08.001

To topTop
User's Publication
21995  Jiang M, Zhao D, Zhou Y, Kong W, Xie Z, Xiong Y, Li Y, Zhao S, Kou X, Zhang S, Meng R, Pan Y, Wu Z, Nakanishi H, Zhao J, Li H, Quan Z, Lin L, Qing H, Ni J.  Cathepsin B modulates microglial migration and phagocytosis of amyloid β in Alzheimer's disease through PI3K-Akt signaling.  Neuropsychopharmacology  2024    PubMed ID: 39304744   DOI: 10.1038/s41386-024-01994-0
22006  Yeh TY, Chu WJ, Huang YS.  GM1 ganglioside protects against LPS-induced neuroinflammatory and oxidative responses by inhibiting the activation of Akt, TAK1 and NADPH oxidase in MG6 microglial cells  Glycobiology  2024  34(1):cwad087  PubMed ID: 37935390   DOI: 10.1093/glycob/cwad087
19625  Mutoh T, Kikuchi H, Jitsuishi T, Kitajo K, Yamaguchi A.  Spatiotemporal expression patterns of ZBP1 in the brain of mouse experimental stroke model  J Chem Neuroanat  2023  134:102362  PubMed ID: 37952561   DOI: 10.1016/j.jchemneu.2023.102362
19626  Kong W, Xie Z, Shang X, Hayashi Y, Lan F, Narengaowa, Zhao S, Li H, Quan Z, Wu Z, Nakanishi H, Qing H, Ni J.  Zinc finger protein 335 mediates lipopolysaccharide-induced neurodegeneration and memory loss as a transcriptional factor in microglia  Glia  2023  71(12):2720-2734  PubMed ID: 37522284   DOI: 10.1002/glia.24447
21097  Fukasawa M, Nishio K, Oikawa D, Itou T, Iinuma T, Asano M.  Allograft inflammatory factor-1 released from the cerebral microglia affect several organs in the body.  J Mol Histol  2023    PubMed ID: 36877416   DOI: 10.1007/s10735-023-10116-x
21113  Sakai M, Yu Z, Taniguchi M, Picotin R, Oyama N, Stellwagen D, Ono C, Kikuchi Y, Matsui K, Nakanishi M, Yoshii H, Furuyashiki T, Abe T, Tomita H.  N-Acetylcysteine Suppresses Microglial Inflammation and Induces Mortality Dose-Dependently via Tumor Necrosis Factor-α Signaling.  Int J Mol Sci  2023  24(4)  PubMed ID: 36835209   DOI: 10.3390/ijms24043798
21127  Kurniati D, Hirai S, Egashira Y.  Effect of apigenin on tryptophan metabolic key enzymes expression in lipopolysaccharide-induced microglial cells and its mechanism.  Heliyon  2023  9(1):e12743  PubMed ID: 36685364   DOI: 10.1016/j.heliyon.2022.e12743
21298  Ishida T, Kawada K, Jobu K, Morisawa S, Kawazoe T, Nishimura S, Akagaki K, Yoshioka S, Miyamura M.  Exosome-like nanoparticles derived from Allium tuberosum prevent neuroinflammation in microglia-like cells.  J Pharm Pharmacol  2023    PubMed ID: 37390476   DOI: 10.1093/jpp/rgad062
21300  Akaishi T, Yamamoto S, Abe K.  3',4'-Dihydroxyflavonol Attenuates Lipopolysaccharide-Induced Neuroinflammatory Responses of Microglial Cells by Suppressing AKT-mTOR and NF-κB Pathways.  Biol Pharm Bull  2023  46(7):914-920  PubMed ID: 37394643   DOI: 10.1248/bpb.b23-00033
21337  Komori T, Kuwahara T, Fujimoto T, Sakurai M, Koyama-Honda I, Fukuda M, Iwatsubo T.  Phosphorylation of Rab29 at Ser185 regulates its localization and role in the lysosomal stress response in concert with LRRK2.  J Cell Sci  2023  136(14)  PubMed ID: 37365944   DOI: 10.1242/jcs.261003
17649  Inoue E, Minatozaki S, Katsuta Y, Nonaka S, Nakanishi H.  Human β-Defensin 3 Inhibits Porphyromonas Gingivalis Lipopolysaccharide-Induced Oxidative and Inflammatory Responses of Microglia by Suppression of Cathepsins B and L  Int J Mol Sci  2022  ;23(23):15099.  PubMed ID: 36499428   DOI: 10.3390/ijms232315099
20396  Liu Y, Li H, Hu J, Wu Z, Meng J, Hayashi Y, Nakanishi H, Qing H, Ni J.  Differential Expression and Distinct Roles of Proteinase-Activated Receptor 2 in Microglia and Neurons in Neonatal Mouse Brain After Hypoxia-Ischemic Injury.  Mol Neurobiol  2022    PubMed ID: 34762231   DOI: 10.1007/s12035-021-02594-5
20546  Tana, Nakagawa T.  Luteolin ameliorates depression-like behaviors by suppressing ER stress in a mouse model of Alzheimer's disease.  Biochem Biophys Res Commun  2022  588:168-174  PubMed ID: 34959189   DOI: 10.1016/j.bbrc.2021.12.074
20576  Xie Z, Meng J, Kong W, Wu Z, Lan F, Narengaowa, Hayashi Y, Yang Q, Bai Z, Nakanishi H, Qing H, Ni J.  Microglial cathepsin E plays a role in neuroinflammation and amyloid β production in Alzheimer's disease.  Aging Cell  2022  e13565  PubMed ID: 35181976   DOI: 10.1111/acel.13565
20584  Akaishi T, Yamamoto S, Abe K.  3',4',7-Trihydroxyflavone Downregulates NO Production in LPS- or IFN-γ-Activated MG6 Microglial Cells by Attenuating the JNK-STAT1 Pathway.  Biol Pharm Bull  2022  45(3):301-308  PubMed ID: 35228396   DOI: 10.1248/bpb.b21-00841
20685  Maejima Y, Horita S, Yokota S, Yamachi M, Shimizu M, Ono T, Yu Z, Tomita H, Shimomura K.  Surface translocation of Kir2.1 channel induces IL-1β secretion in microglia.  Mol Cell Neurosci  2022  120:103734  PubMed ID: 35508277   DOI: 10.1016/j.mcn.2022.103734
20786  Kawamura N, Katsuura G, Yamada-Goto N, Nakama R, Kambe Y, Miyata A, Furuyashiki T, Narumiya S, Ogawa Y, Inui A.  Brain fractalkine-CX3CR1 signalling is anti-obesity system as anorexigenic and anti-inflammatory actions in diet-induced obese mice.  Sci Rep  2022  12(1):12604  PubMed ID: 35871167   DOI: 10.1038/s41598-022-16944-3
20113  Ozawa S, Hori Y, Shimizu Y, Taniguchi A, Suzuki T, Wang W, Chiu YW, Koike R, Yokoshima S, Fukuyama T, Takatori S, Sohma Y, Kanai M, Tomita T.  Photo-oxygenation by a biocompatible catalyst reduces amyloid-β levels in Alzheimer's disease mice.  Brain  2021    PubMed ID: 33851209   DOI: 10.1093/brain/awab058
20261  Ni J, Zhao J, Zhang X, Reinheckel T, Turk V, Nakanishi H.  Cathepsin H deficiency decreases hypoxia-ischemia-induced hippocampal atrophy in neonatal mice through attenuated TLR3/IFN-β signaling.  J Neuroinflammation  2021  18(1):176  PubMed ID: 34376208   DOI: 10.1186/s12974-021-02227-7
20272  Ma Y, Yoshida T, Matoba K, Kida K, Shintani R, Piao Y, Jin J, Nishino T, Hanayama R.  Identification of small compounds regulating the secretion of extracellular vesicles via a TIM4-affinity ELISA.  Sci Rep  2021  11(1):13471  PubMed ID: 34188113   DOI: 10.1038/s41598-021-92860-2
16425  Novianti E, Katsuura G, Kawamura N, Asakawa A, Inui A.  Atractylenolide-III suppresses lipopolysaccharide-induced inflammation via downregulation of toll-like receptor 4 in mouse microglia  Heliyon  2021  7(10):e08269.  PubMed ID: 34765767   DOI: 10.1016/j.heliyon.2021.e08269
16530  Saputra WD, Shono H, Ohsaki Y, Sultana H, Komai M, Shirakawa H.  Geranylgeraniol Inhibits Lipopolysaccharide-Induced Inflammation in Mouse-Derived MG6 Microglial Cells via NF-κB Signaling Modulation  Int J Mol Sci  2021  22(19):10543  PubMed ID: 34638882   DOI: 10.3390/ijms221910543
17029  Jiang M, Zhang X, Yan X, Mizutani S, Kashiwazaki H, Ni J, Wu Z.  GSK3β is involved in promoting Alzheimer's disease pathologies following chronic systemic exposure to Porphyromonas gingivalis lipopolysaccharide in amyloid precursor protein NL-F/NL-F knock-in mice  Brain Behav Immun  2021  98:1-12  PubMed ID: 34391814   DOI: 10.1016/j.bbi.2021.08.213
11817  Suzuki T, Kohyama K, Moriyama K, Ozaki M, Hasegawa S, Ueno T, Saitoe M, Morio T, Hayashi M, Sakuma H.  Extracellular ADP augments microglial inflammasome and NF-κB activation via the P2Y12 receptor.  Eur. J. Immunol.  2020  50(2):205-219  PubMed ID: 31549730   DOI: 10.1002/eji.201848013
12025  Ogawa K, Yagi T, Guo T, Takeda K, Ohguchi H, Koyama H, Aotani D, Imaeda K, Kataoka H, Tanaka T.  Pemafibrate, a selective PPARα modulator, and fenofibrate suppress microglial activation through distinct PPARα and SIRT1-dependent pathways.  Biochem. Biophys. Res. Commun.  2020    PubMed ID: 32005522   DOI: 10.1016/j.bbrc.2020.01.118
13230  Meng J, Liu Y, Xie Z, Qing H, Lei P, Ni J.  Nucleus distribution of cathepsin B in senescent microglia promotes brain aging through degradation of sirtuins.  Neurobiol Aging  2020    PubMed ID: 33049518   DOI: 10.1016/j.neurobiolaging.2020.09.001
13244  Shih JH, Tsai YF, Li IH, Chen MH, Huang YS.  Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-κB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells.  Mar Drugs  2020    PubMed ID: 33003399   DOI: 10.3390/md18100496
13565  Gu Y, Wu Z, Zeng F, Jiang M, Teeling JL, Ni J, Takahashi I.  Systemic Exposure to Lipopolysaccharide from Porphyromonas gingivalis Induces Bone Loss-Correlated Alzheimer's Disease-Like Pathologies in Middle-Aged Mice  J Alzheimers Dis  2020  78(1):61-74  PubMed ID: 32925065   DOI: 10.3233/JAD-200689
13602  Tsutsui T, Kawahara H, Kimura R, Dong Y, Jiapaer S, Sabit H, Zhang J, Yoshida T, Nakada M, Hanayama R.  Glioma-derived extracellular vesicles promote tumor progression by conveying WT1  Carcinogenesis  2020  41(9):1238-1245  PubMed ID: 32463428   DOI: 10.1093/carcin/bgaa052
11351  Ni J, Wu Z, Stoka V, Meng J, Hayashi Y, Peters C, Qing H, Turk V, Nakanishi H.  Increased expression and altered subcellular distribution of cathepsin B in microglia induce cognitive impairment through oxidative stress and inflammatory response in mice.  Aging Cell  2019    PubMed ID: 30575263   DOI: 10.1111/acel.12856
5292  Huntula S, Saegusa H, Wang X, Zong S, Tanabe T.  Involvement of N-type Ca2+ channel in microglial activation and its implications to aging-induced exaggerated cytokine response.  Cell Calcium  2019  82:102059  PubMed ID: 31377554   DOI: 10.1016/j.ceca.2019.102059
5306  Saputra WD, Aoyama N, Komai M, Shirakawa H4,.  Menaquinone-4 Suppresses Lipopolysaccharide-Induced Inflammation in MG6 Mouse Microglia-Derived Cells by Inhibiting the NF-κB Signaling Pathway.  Int J Mol Sci  2019  20(9). pii: E2317  PubMed ID: 31083359   DOI: 10.3390/ijms20092317
5308  Inoue T, Yamakage H, Tanaka M, Kusakabe T, Shimatsu A, Satoh-Asahara N.  Oxytocin Suppresses Inflammatory Responses Induced by Lipopolysaccharide through Inhibition of the eIF-2-ATF4 Pathway in Mouse Microglia.  Cells  2019  8(6):527  PubMed ID: 31159306   DOI: 10.3390/cells8060527
5316  Youssef M, Ibrahim A, Akashi K, Hossain MS.  PUFA-Plasmalogens Attenuate the LPS-Induced Nitric Oxide Production by Inhibiting the NF-kB, p38 MAPK and JNK Pathways in Microglial Cells.  Neuroscience  2019  15;397:18-30  PubMed ID: 30496826   DOI: 10.1016/j.neuroscience.2018.11.030
5319  Fujikura M1, Iwahara N, Hisahara S, Kawamata J, Matsumura A, Yokokawa K, Saito T, Manabe T, Matsushita T, Suzuki S, Shimohama S.  CD14 and Toll-Like Receptor 4 Promote Fibrillar Aβ42 Uptake by Microglia Through A Clathrin-Mediated Pathway.  J Alzheimers Dis  2019  68(1):323-337  PubMed ID: 30775984   DOI: 10.3233/JAD-180904
5320  Palikhe S, Ohashi W, Sakamoto T, Hattori K, Kawakami M, Andoh T, Yamazaki H, Hattori Y.  Regulatory Role of GRK2 in the TLR Signaling-Mediated iNOS Induction Pathway in Microglial Cells.  Front Pharmacol  2019  10:59  PubMed ID: 30778300   DOI: 10.3389/fphar.2019.00059
11614  Wang X, Saegusa H, Huntula S, Tanabe T.  Blockade of microglial Cav1.2 Ca2+ channel exacerbates the symptoms in a Parkinson's disease model.  Sci Rep  2019    PubMed ID: 31235768   DOI: 10.1038/s41598-019-45681-3
11777  Ni J, Wu Z, Meng J, Saito T, Saido TC, Qing H, Nakanishi H.  An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain.  J Neuroinflammation  2019  16(1):173  PubMed ID: 31470863   DOI: 10.1186/s12974-019-1562-9
10687  Yasuhiro Nakagawa, Yuto Yano, Jeonggyu Lee, Yasutaka Anraku, Makoto Nakakido Makoto Nakakido, Kouhei Tsumoto, Horacio Cabral, and Mitsuhiro Ebara  Apoptotic Cell-Inspired Polymeric Particles for Controlling Microglial Inflammation toward Neurodegenerative Disease Treatment  ACS Biomater Sci Eng  2019  5:5705–5713  PubMed ID: 33405702   DOI: 10.1021/acsbiomaterials.8b01510
10710  Kidana K, Tatebe T, Ito K, Hara N, Kakita A, Saito T, Takatori S, Ouchi Y, Ikeuchi T, Makino M, Saido TC, Akishita M, Iwatsubo T, Hori Y, Tomita T.  Loss of kallikrein-related peptidase 7 exacerbates amyloid pathology in Alzheimer's disease model mice.  EMBO Mol Med  2018    PubMed ID: 29311134   DOI: 10.15252/emmm.201708184
10775  Kawakami M, Hattori M, Ohashi W, Fujimori T, Hattori K, Takebe M, Tomita K, Yokoo H, Matsuda N, Yamazaki M, Hattori Y.  Role of G protein-coupled receptor kinase 2 in oxidative and nitrosative stress-related neurohistopathological changes in a mouse model of sepsis-associated encephalopathy.  J. Neurochem.  2018  145(6):474-488  PubMed ID: 29500815   DOI: 10.1111/jnc.14329
11056  Meng J, Ni J, Wu Z, Jiang M, Zhu A, Qing H, Nakanishi H.  The Critical Role of IL-10 in the Anti-neuroinflammatory and Anti-oxidative Effects of Rheum tanguticum on Activated Microglia  Oxid Med Cell Longev  2018  2018:1083596  PubMed ID: 29854069   DOI: 10.1155/2018/1083596
4423  Taiki Shima et al  Effects of antiepileptic drugs on microglial properties  Epilepsy & Seizure  2018  10, 22-32    DOI: 10.3805/eands.10.22
4293  Serizawa K, Tomizawa-Shinohara H, Magi M, Yogo K, Matsumoto Y.  Anti-IL-6 receptor antibody improves pain symptoms in mice with experimental autoimmune encephalomyelitis.  J. Neuroimmunol.  2018    PubMed ID: 29685293   DOI: 10.1016/j.jneuroim.2018.03.017
4294  Shimamura M, Nakagami H, Shimizu H, Mukai H, Watanabe R, Okuzono T, Kawano T, Ikeda Y, Hayashi H, Yoshida S, Ju N, Mochizuki H, Morishita R.  Development of a novel RANKL-based peptide, microglial healing peptide1-AcN (MHP1-AcN), for treatment of ischemic stroke.  Sci Rep  2018    PubMed ID: 30538259   DOI: 10.1038/s41598-018-35898-z
4295  Shimamura M, Nakagami H, Shimizu H, Wakayama K, Kawano T, Ikeda Y, Hayashi H, Yoshida S, Mochizuki H, Morishita R.  Therapeutic Effects of Systemic Administration of the Novel RANKL-Modified Peptide, MHP1, for Ischemic Stroke in Mice.  Biomed Res Int  2018    PubMed ID: 30151382   DOI: 10.1155/2018/4637084
14541  Aiqin Zhu, Xin Zhong, Wei Nian, Shizheng Wu, Jie Meng, Junjun Ni, Yoshinori Hayashi, Zhou Wu, Hiroshi Nakanishi  Ratanasampil Suppresses the Hypoxia-Related Inflammatory Responses by Inhibiting Oxidative Stress and NF-kB Activation in Microglia  Journal of Alzheimer’s Disease & Parkinsonism  2018  08    DOI: 10.4172/2161-0460.1000451
7030  Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, Ibbett P, Nakanishi H.  Cathepsin B plays a critical role in inducing Alzheimer's disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice.  Brain Behav. Immun.  2017  65:350-361  PubMed ID: 28610747   DOI: 10.1016/j.bbi.2017.06.002
10102  Mahmoud ME, Fereig R, Nishikawa Y.  Involvement of Host Defense Mechanisms against Toxoplasma gondii Infection in Anhedonic and Despair-Like Behaviors in Mice.  Infect. Immun.  2017  85:  PubMed ID: 28138019   DOI: 10.1128/IAI.00007-17
10138  Inoue T, Tanaka M, Masuda S, Ohue-Kitano R, Yamakage H, Muranaka K, Wada H, Kusakabe T, Shimatsu A, Hasegawa K, Satoh-Asahara N.  Omega-3 polyunsaturated fatty acids suppress the inflammatory responses of lipopolysaccharide-stimulated mouse microglia by activating SIRT1 pathways.  Biochim. Biophys. Acta  2017  1862:552-560  PubMed ID: 28254441   DOI: 10.1016/j.bbalip.2017.02.010
10527  Liu Y, Wu Z, Nakanishi Y, Ni J, Hayashi Y, Takayama F, Zhou Y, Kadawaki T, Nakanishi H.  Infection of microglia with Porphyromonas gingivalis promotes cell migration and an inflammatory response through the gingipain-mediated activation of protease-activated receptor-2 in mice.  Sci Rep  2017  7:11759  PubMed ID: 28924232   DOI: 10.1038/s41598-017-12173-1
5311  Koshiguchi M, Komazaki H, Hirai S, Egashira Y.  Ferulic acid suppresses expression of tryptophan metabolic key enzyme indoleamine 2, 3-dioxygenase via NFκB and p38 MAPK in lipopolysaccharide-stimulated microglial cells.  Biosci Biotechnol Biochem  2017  81(5):966-971  PubMed ID: 28077028   DOI: 10.1080/09168451.2016.1274636
14223  Tanaka Y, Suzuki G, Matsuwaki T, Hosokawa M, Serrano G, Beach TG, Yamanouchi K, Hasegawa M, Nishihara M.  Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes  Hum Mol Genet  2017  26(5):969-988  PubMed ID: 28073925   DOI: 10.1093/hmg/ddx011
7104  Hosain MZ, Mori T, Kishimura A, Katayama Y.  Synergy between phenotypic modulation and ROS neutralization in reduction of inflammatory response of hypoxic microglia by using phosphatidylserine and antioxidant containing liposomes.  J Biomater Sci Polym Ed  2016  27:290-302  PubMed ID: 26689775   DOI: 10.1080/09205063.2015.1125565
9595  Hossain MS, Mineno K, Katafuchi T.  Neuronal Orphan G-Protein Coupled Receptor Proteins Mediate Plasmalogens-Induced Activation of ERK and Akt Signaling.  PLoS ONE  2016  11:e0150846  PubMed ID: 26934370   DOI: 10.1371/journal.pone.0150846
9766  Takayama F, Hayashi Y, Wu Z, Liu Y, Nakanishi H.  Diurnal dynamic behavior of microglia in response to infected bacteria through the UDP-P2Y6 receptor system.  Sci Rep  2016  6:30006  PubMed ID: 27445174   DOI: 10.1038/srep30006
9970  Kurinami H, Shimamura M, Nakagami H, Shimizu H, Koriyama H, Kawano T, Wakayama K, Mochizuki H, Rakugi H, Morishita R.  A Novel Therapeutic Peptide as a Partial Agonist of RANKL in Ischemic Stroke.  Sci Rep  2016  6:38062  PubMed ID: 27897273   DOI: 10.1038/srep38062
7218  Ni J, Wu Z, Peterts C, Yamamoto K, Qing H, Nakanishi H.  The Critical Role of Proteolytic Relay through Cathepsins B and E in the Phenotypic Change of Microglia/Macrophage.  J. Neurosci.  2015  35:12488-501  PubMed ID: 26354916   DOI: 10.1523/JNEUROSCI.1599-15.2015
7247  Takenouchi T, Tsukimoto M, Iwamaru Y, Sugama S, Sekiyama K, Sato M, Kojima S, Hashimoto M, Kitani H.  Extracellular ATP induces unconventional release of glyceraldehyde-3-phosphate dehydrogenase from microglial cells.  Immunol. Lett.  2015  167:116-24  PubMed ID: 26277554   DOI: 10.1016/j.imlet.2015.08.002
7369  Segawa S, Tatsumi N, Ohishi A, Nishida K, Nagasawa K.  Characterization of zinc uptake by mouse primary cultured astrocytes and microglia.  Metallomics  2015  7:1067-77  PubMed ID: 25924210   DOI: 10.1039/c5mt00085h
5303  Yu Z, Ono C, Aiba S, Kikuchi Y, Sora I, Matsuoka H, Tomita H.  Therapeutic concentration of lithium stimulates complement C3 production in dendritic cells and microglia via GSK-3 inhibition.  Glia  2015  63(2):257-70  PubMed ID: 25179772   DOI: 10.1002/glia.22749
5314  Bahrini I, Song JH, Diez D, Hanayama R.  Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia.  Sci Rep  2015  5:7989  PubMed ID: 25612542   DOI: 10.1038/srep07989
5313  Ishisaka A, Mukai R, Terao J, Shibata N, Kawai Y.  Specific localization of quercetin-3-O-glucuronide in human brain.  Arch Biochem Biophys  2014  557:11-7  PubMed ID: 24893148   DOI: 10.1016/j.abb.2014.05.025
5317  Jin Y, Sato K, Tobo A, Mogi C, Tobo M, Murata N, Ishii S, Im DS, Okajima F.  Inhibition of interleukin-1β production by extracellular acidification through the TDAG8/cAMP pathway in mouse microglia.  J Neurochem  2014  129(4):683-95  PubMed ID: 24447140   DOI: 10.1111/jnc.12661
5321  Kotake M, Sato K, Mogi C, Tobo M, Aoki H, Ishizuka T, Sunaga N, Imai H, Kaira K, Hisada T, Yamada M, Okajima F.  Acidic pH increases cGMP accumulation through the OGR1/phospholipase C/Ca(2+)/neuronal NOS pathway in N1E-115 neuronal cells.  Cell Signal  2014  26(11):2326-32  PubMed ID: 25025574   DOI: 10.1016/j.cellsig.2014.07.010
5304  Liu Y, Wu Z, Zhang X, Ni J, Yu W, Zhou Y, Nakanishi H.  Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS.  Mediators Inflamm  2013  2013:407562  PubMed ID: 24363500   DOI: 10.1155/2013/407562
5305  Wu Z, Zhu A, Takayama F, Okada R, Liu Y, Harada Y, Wu S, Nakanishi H.  Brazilian green propolis suppresses the hypoxia-induced neuroinflammatory responses by inhibiting NF-κB activation in microglia.  Oxid Med Cell Longev  2013  2013:906726  PubMed ID: 23983903   DOI: 10.1155/2013/906726
7591  Kitajima H, Komizu Y, Ueoka R.  Hybrid liposomes inhibit growth and invasion of human osteosarcoma cells leading to apoptosis.  Bioorg. Med. Chem. Lett.  2012  22:1784-7  PubMed ID: 22260774   DOI: 10.1016/j.bmcl.2011.12.031
7594  Yanagitai M, Itoh S, Kitagawa T, Takenouchi T, Kitani H, Satoh T.  Carnosic acid, a pro-electrophilic compound, inhibits LPS-induced activation of microglia.  Biochem. Biophys. Res. Commun.  2012  418:22-6  PubMed ID: 22214931   DOI: 10.1016/j.bbrc.2011.12.087
5312  Mukai R, Kawabata K, Otsuka S, Ishisaka A, Kawai Y, Ji ZS, Tsuboi H, Terao J.  Effect of quercetin and its glucuronide metabolite upon 6-hydroxydopamine-induced oxidative damage in Neuro-2a cells.  Free Radic Res  2012  46(8):1019-28  PubMed ID: 22404304   DOI: 10.3109/10715762.2012.673720
7884  Takenouchi T, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, Sekigawa A, Sekiyama K, Sato M, Kojima S, Conti B, Hashimoto M, Kitani H.  The activation of P2X7 receptor induces cathepsin D-dependent production of a 20-kDa form of IL-1β under acidic extracellular pH in LPS-primed microglial cells.  J. Neurochem.  2011  117:712-23  PubMed ID: 21395581   DOI: 10.1111/j.1471-4159.2011.07240.x
10347  Denehy TR, Choe JY, Gregori CA, Breen JL.  Modified Le Fort partial colpocleisis with Kelly urethral plication and posterior colpoperineoplasty in the medically compromised elderly: a comparison with vaginal hysterectomy, anterior colporrhaphy, and posterior colpoperineoplasty.  Am. J. Obstet. Gynecol.  1995  173:1697-701  PubMed ID: 8610747   DOI: 10.1016/0002-9378(95)90412-3



Back Back Return Top Page